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SET OF 1,000 ENZYMES SELECTED USING MOTIF SCREENS 
 
1. Scope of Deliverable 
This deliverable consists in a list of at least 1,000 full-length candidate sequences encoding enzymes with 
high probability to fulfil manufacturers’ specifications (according to the initial proposal). These sequences 
are selected in Task 2.3 by machine learning techniques applied to the at least 250,000 full-length candidate 
sequences delivered in deliverable D2.2 (according to the initial proposal). In brief, as a result of the activities 
done to achieve Deliverable D2.2 “Set of 250,000 sequences pre-selected” (November 2021, updated 
December 2022), a total of approx. 3.16 million sequences encoding target enzymes were retrieved and pre-
selected. In Deliverable 2.3, a number of bioinformatics and computational tools were applied that allow the 
pre-selection of approx. 1355 sequences encoding enzymes relevant to FuturEnzyme, which were transferred 
to WP4. Note that these pre-selected sequences do not account those retrieved after functional screens in 
WP3. The list of sequences retrieved and pre-selected has been compiled in fasta or Excel tables deposited 
in the FuturEnzyme internal repository and also as a report that accompanies this deliverable (the present 
document). 

2. Reasons for the update 
The first version of the Deliverable D2.3 was submitted in May 2022. This update is due to the fact that since 
the submission, the partners were able to pre-select a new set of sequences by applying the same methods 
described in the previous version or new ones that were further developed. In November 2022, the 
Coordinator (Manuel Ferrer) contacted the Project Officer (Colombe Warin) to explain these circumstances 
and ask her to re-open the submission of this deliverable (amongst others), at which she agreed. 

3. Origin of the deliverable 
Along the already 18 months of project, one deliverable has been accomplished from which the present one 
nourishes. To be mentioned:  

 D2.2: Set of 250,000 sequences pre-selected (November 2021, updated December 2022) 
In this deliverable, information about the approximately 3.16 million sequences encoding target enzymes that 
were retrieved and pre-selected by a number of in silico methods are detailed.  

4. Introduction & Methodology 
4.1. Source and profiling of enzymes  
The source of sequences is detailed in Deliverable D2.2 “Set of 250,000 sequences pre-selected” (November 
2021, updated December 2022). A total of about 3.16 million sequences encoding target enzymes were 
retrieved and pre-selected through the applications of a set of bioinformatics and computational tools to 
public sequence repositories and FuturEnzyme genomes and metagenomes sequences. The tools included: 
i) DIAMOND BLASTP, PSI-BLAST (EMBL-EBI) and Hidden Markov Model (HMM), high-throughput programs 
for aligning protein sequences against protein reference databases; ii) MCL algorithm (Markov Cluster 
Algorithm), an efficient algorithm for large-scale detection of protein families through network analyses; iii) 
PELE (Protein Energy Landscape Exploration), a protein-ligand Monte Carlo simulations software; and iv) the 
machine learning EP-Pred ensemble classifier. 

4.2. Pre-selections by computationally-based rigidity screens  
We applied the AlphaFold2-based workflow of ColabFold to generate 3D structural models of selected 
enzymes. A single model was generated for each enzyme with ten prediction cycles (--num_recycles) and 
structurally refined by running a relaxation with AMBER (--amber). For subsequent analyses, only enzymes 
with a sufficient quality of the 3D structural model, with a sequence length < 1000 residues, and without 
cofactors were considered. To test whether the catalytically active residues (CARs) of the 3D structures are 
accessible for substrates, we used the CAVER 3.0.3 PyMOL Plugin. Therefore, CARs were identified based on 
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the minimal summed distances between all catalytic amino acids. Starting points for the computations were 
defined based on the Cartesian coordinates of the CARs’ centre of mass (COM). Default values were used for 
the probe radius (0.9 Å), shell radius (3.0 Å), and shell depth (4.0 Å). We verified that CARs in all models are 
accessible for substrates, i.e. that all models are in an open conformation: CARs are either located on the 
protein surface or are buried and connected with the surface by tunnels. 

The enzyme structures were pre-processed with pdb4amber, which is part of AmberTools21, and hydrogen 
atoms were added using the Reduce program. The prepared enzymes were solvated in a truncated 
octahedron of TIP3P water, leaving at least 20 Å between the enzyme structure and the edges of the solvent 
box, using the LeaP program of AmberTools21. All systems were neutralized by adding Na+ or Cl- ions as 
needed. We used the Amber ff14SB force field to parametrize the protein. Ion parameters were taken from 
Joung and Cheatham. Structural ensembles of enzymes were generated by all-atom MD simulations, with 
five replicas at 500 ns, yielding 2.5 μs of cumulative simulation time per enzyme. Minimization steps, 
thermalization, and production simulations were carried out using the GPU-accelerated CUDA version of 
PMEMD from the Amber21 suite of programs. The systems were heated to 298 K, and the pressure was 
adapted in NPT simulations such that a density of 1 g cm-3 was obtained. During thermalization and density 
adaptation, we kept the solute fixed by positional restraints of 1 kcal mol-1 Å-2, which were gradually removed 
over five steps in short subsequent NVT simulations. Afterwards, five NVT production simulations of 500 ns 
length were performed using unbiased MD simulations. During production simulations, we set the time step 
to integrate Newton’s equation of motion to 4 fs following the hydrogen mass repartitioning strategy. 
Coordinates were saved every 200 ps yielding 2500 conformations for each production run that were 
considered for subsequent analyses. 

Rigidity analyses were performed using the Constraint Network Analysis (CNA) software package (version 
3.0). In detail, we applied CNA on ensembles of network topologies generated from conformational 
ensembles obtained from MD simulations. Average stability characteristics were calculated by constraint 
counting on each topology in the ensemble. CNA functions as a front- and back-end to the graph theory-
based software Floppy Inclusions and Rigid Substructure Topography (FIRST). Applying CNA to biomolecules 
aims to identify their composition of rigid clusters and flexible regions, which can aid in understanding the 
biomolecular structure, stability, and function. As the mechanical heterogeneity of biomolecular structures 
is intimately linked to their diverse biological functions, biomolecules generally show a hierarchy of rigid and 
flexible regions. To monitor this hierarchy, CNA performs thermal unfolding simulations by consecutively 
removing noncovalent constraints (hydrogen bonds and salt bridges) from a network in the order of their 
increasing strength. Therefore, a hydrogen bond energy EHB is computed from an empirical energy function. 
For a given network state σ = f(T), hydrogen bonds (including salt bridges) with an energy EHB > Ecut(σ) are 
removed from the network at temperature T. In the present study, thermal unfolding simulations were 
carried out by decreasing Ecut from -0.1 kcal mol−1 to –6.0 kcal mol−1 with a step size of 0.1 kcal mol−1. As Ecut 
can be converted to a temperature T using the linear equation (see below equation), the range of Ecut is 
equivalent to increasing the temperature from 302 K to 420 K with a step size of 2 K. 

𝑇 = −
20K

(kcal mol )
∗ 𝐸 + 300K 

The number of hydrophobic tethers was kept constant during the thermal unfolding simulations. From the 
thermal unfolding simulations, CNA computes a set of indices to quantify biologically relevant characteristics 
of the protein’s stability at a global and local scale. We used the cluster configuration entropy Htype2, a 
measure for the global structural stability, to predict the phase transition temperature Tp (for details on 
Htype2). At Tp, the protein switches from a rigid (structurally stable) to a floppy (unfolded) state, and the largest 
rigid cluster stops to dominate the whole protein network. If the largest rigid cluster dominates the whole 
protein network, Htype2 is low because of the limited number of possible ways to configure a system with a 
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very large cluster. When the largest rigid cluster starts to decay or stops to dominate the network, Htype2 
jumps. There, the network is in a partially flexible state with many ways to configure a system consisting of 
many small clusters. The percolation behaviour of protein networks is usually complex, and multiple phase 
transitions can be observed. To identify Tp, a double sigmoid fit was applied to an Htype2 versus T(Ecut) curve 
as done previously. In general, Tp was taken as that T value associated with the largest slope of the fit except 
for enzymes with Td > 50°C, for which the second phase transition was chosen to focus on the decomposition 
of the core. 

Figure 1 summarizes the pipeline used for enzyme pre-selection based on rigidity analysis. 

 
Figure 1. Illustration representing the pipeline used for enzyme pre-selection based on rigidity analysis. 

4.3 Pre-selection by computationally-based Protein Energy Landscape Exploration (PELE) 
We developed a pipeline to characterize different enzyme families, having their sequences as the only input 
to find which enzyme sequences could be potential candidates to fulfil manufacturers’ specifications. First, 
we checked whether the sequence contained the proper domain, the catalytic residues, whether it was 
patented, and its conservation (along with MSA) based on bioinformatic tools (Figure 2).  

 
Figure 2. Illustration representing the software used to check the sequences with bioinformatic tools. 
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The sequences that passed this first filtering were modelled with AlphaFold 2.0 to obtain their 3D structure. 
Once the structure was obtained, substrates specified by the manufacturers’ specifications were docked with 
the Glide software from the Schrödinger company in the active site of these enzymes. Subsequently, the 
substrate positioning around the active site was further explored with the software from partner BSC, Protein 
Energy Landscape Exploration (PELE). To account for the goodness of an enzyme-substrate interaction, the 
measure of the catalytic events was extracted (those presenting catalytic-like distances) taking into account 
just the accepted Monte Carlo PELE steps “accepted catalytic events” or all (accepted and rejected) PELE 
steps “all catalytic events” (Figure 3). 

 
Figure 3. Scheme explaining the workflow of PELE’s software. 

The substrates were downloaded from the PubChem database, and their electrostatic point (ESP) charges 
were calculated from a quantum mechanics single point energy calculation with the Jaguar software from 
the Schrödinger company. These ESP charges were used in the mentioned induced-fit PELE simulations to 
have a higher precision in predicting the catalytic binding of the substrate in the active site of the enzyme. 

Table 1 illustrates the summary workflow for pre-selecting sequences encoding enzymes with appropriated 
number of catalytic events towards target substrates. Those candidates are further transferred to WP4 for 
extensive characterization and validation of the pipeline (Figure 4). 

Table 1. Summary workflow. 
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Figure 4. Experimental and computational workflow to search for new enzymes. 

4.4 Pre-selection through PSI-BLAST and PELE (Protein Energy Landscape Exploration) 
In some cases, PSI-BLAST and PELE (Protein Energy Landscape Exploration) were used in combination to 
identify homologues to one enzyme that in the frame of the FuturEnzyme project was selected among the 
priority targets, such as the lipase Lip9. In brief, we applied PSI-BLAST to find a reasonable amount of similar 
enzymes in databases and test them using the protein-ligand Monte Carlo simulations software, PELE 
(Protein Energy Landscape Exploration). By doing so, one can ensure that the selected sequences are not 
overly similar to an original enzyme, but do retain similar or improved characteristics. More in details, for the 
bioprospecting of Lip9, hundreds of sequences were searched by means of PSI-BLAST, a tool designed to find 
distant homologs for a certain protein, using Lip9 as the seed. Then, the sequences were filtered through 
different parameters, including AlphaFold confidence level, the alignability of the catalytic residues to the 
Lip9 catalytic triad, the existence of a spatially well-designed triad in the AlphaFold models, and the low 
resemblance to a patented lipase (WP_106066877.1). A set of 15 different ligands were docked, all of them 
being triglycerides constituting different grease stains. Finally, protein-ligand simulations were run on the 
selected new sequences with the in-house all-atom Monte Carlo molecular modelling sampling technique 
PELE. 

4.5 Preselection using the machine learning EP-Pred method 
A machine learning tool for bioprospecting enzymes relevant to FuturEnzyme was also implemented. Briefly, 
we implemented a method called EP-Pred, an ensemble binary classifier built to predict the promiscuity of 
ester hydrolases. It combines 3 different machine learning algorithms: Support vector machines (SVC), K-
nearest neighbours (KNN) and a lineal model (the RidgeClassifier implementation on Sckit-Learn. It was 
trained on a dataset containing 147 phylogenetically diverse esterases and their activity on 96 distinct ester 
substrates. The labelling of the classes was based on the number of substrates catalyzed, where 20 or more 
substrates were considered promiscuous and less than 20, non-promiscuous. The program can be 
dowonloaded in GitHub etiur/EP-pred: A machine learning program to predict promiscuity of esterases 
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(github.com). For its use, it is required to install 3 external programs: Ifeature, Possum and Blast+ NCBI. It is 
also needed a protein database, in this case, the Uniref50. The main.py script will then perform the rest of 
the operations if provided with the input esterases and the appropriate flags. It will transform the uniref50 
into a Blast database and use it to extract the PSSM profiles. It will generate the features used by the models 
using Ifeature and Possum and finally it will predict the promiscuity of the sequences. EP-Pred has been 
evaluated against the Lipase Engineering Database (http://www.led.uni-stuttgart.de/) together with a HMMs 
approach leading to select sequences encoding esterases and lipases. For extensive details see the recent 
reference (https://www.mdpi.com/2218-273X/12/10/1529). Figure 5 summarizes the EP-Pred pipeline for 
enzyme pre-selection. 
 

 
Figure 5. EP-Pred pipeline for enzyme pre-selection. A, Since there was a mix of different families in LED, first we applied an HMM 
profile created from the esterase dataset to clean the database and keep only esterases. B, EP-pred evaluated the remaining 
sequences and predicted around 500 positive hits. C, The top 100 sequences according to E-values returned by HMM in step A were 
isolated and analyzed according to molecular descriptors from homology modeling (HM) and Sitemap calculations. D, A final set of 
10 sequences with the highest hydrophobicity and enclosure/exposure scores were gathered and sent to be validated experimentally. 

4.5 Pre-selection by Hidden Markov Model (HMM) 
As detailed in Deliverable D2.2, HMMs was performed to identify homologues to one enzyme that in the 
frame of the FuturEnzyme project was selected among the priority targets, such as the lipase Lip9. In this 
case, the sequence of Lip9 was compared against NCBI’s database 
(https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz) and in-house collections of genomes and shotgun 
sequences of metagenomes obtained by shotgun sequencing. Alignment was performed with diamond 
2.0.15.153 (https://doi.org/10.1038/s41592-021-01101-x) and alignments within 25% range of top alignment 
score were reported. 

4.6 Pre-selection by Stability Consensus Metapredictor (SCOT) 
SCOT is a Random Forest based Machine Learning metapredictor that combines the estimations of 8 already 
published protein stability predictors and a molecular filter to produce a more reliable result. Predictors: 
MAESTRO, CUPSAT, AUTOMUTE-SVM and AUTOMUTE-TR, FOLDX, INPS3D, MUPRO and I-MUTANT. More in 
details, Delta Delta G (DDG) is a metric for predicting how a single point mutation will affect protein stability. 
DDG, often referred to as 𝚫𝚫G, is the change in the change in Gibbs free energy (double changes intended). 
DDG is a measure of the change in energy between the folded and unfolded states (𝚫Gfolding) and the 
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change in 𝚫Gfolding when a point mutation is present. This has been found to be an excellent predictor of 
whether a point mutation will be favourable in terms of protein stability. There are other protein stability 
predictors that can be apply such as: PROSS, FIREPROT 2.0, or Cyrus DDG tool from Rosetta. The Cyrus DDG 
tool uses a new version Rosetta DDG calculation, Cartesian DDG, which has a variety of improvements over 
the previous method (Kellogg). The new method is more complex, but fully automated in Cyrus Bench, and 
features improvements in energy function, mutations with change in net charge, proline free energies, 
solvation models, side chain optimization, and structure preparation. The new version has improved 
accuracy, better consistency across similar input protein structures, and most notably fewer outliers with 
highly inaccurate calculated results. 

5. Results 
5.1 Pre-selection by PELE of sequences selected by BLASTP-DIAMOND and MCL algorithm  
As detailed in Deliverable D2.2 “Set of 250,000 sequences pre-selected” (November 2021, updated 
December 2022), a total of 3,152,857 sequences were pre-selected by applying BLASTP and DIAMOND 
BLASTP against public sequence repositories and internal FuturEnzyme sequences detailed in Section 4.2, 
using also the manually curated and customized database contain 37,403 taxonomically diverse protein 
sequences featuring the key enzyme families relevant to FuturEnzyme (see Section 4.1). Network analysis by 
MCL algorithm further revealed that they grouped into 457 clusters, each containing enzymes that most likely 
do show similar properties. A total of 457 sequences of reference conforming each of the clusters were pre-
selected (Annex Figure 1) and further checked whether the sequence contained the proper catalytic domains 
and catalytic residues, and the presence of signal peptides, by performing the computational pipeline 
summarized in Table 1 for the different needs in the project. 

As detailed in the Deliverable D2.1 “Manufacturers' needs and specifications, protocol”, in the case of 
Evonik’s needs, the objective is to identify hyaluronidase-like enzymes capable of degrading hyaluronic acid 
to small hyaluronic acid products with 1-2 kDa molecular weight, at <37˚C, no solvents, and high viscosity 
solutions. Priority targets will be enzymes degrading hyaluronic acid: 

 Heparanase (EC 3.2.1.166) 
 Hyaluronate lyase (cd01083 - EC 4.2.2.1) 
 Hyaluronidase (EC 3.2.1.35, EC3.2.1.36, pfam03662, pfam01630). 

Each type of hyaluronate degrading enzyme has its own catalytic residues and catalytic mechanism. Thus, we 
considered this notion when counting the number of catalytic poses in the PELE simulations. In the case of 
both 3.2.1.36 and 3.2.1.166 enzyme sequences, the used substrate was a trimer of the hyaluronate molecule 
(focusing on the β-(1→3) glycosidic bond,) which is the one that these enzymes break. One of the sequences 
stood out above the rest, which is the one that is closest to being a 3.2.1.36 classified enzyme. In contrast, 
the other sequences have closer homologs that belong to the 3.2.1.166 enzyme family. The problem is that 
this enzyme family defines the heparanases enzymes. Thus, they are specific towards heparan sulfate with a 
promiscuous (residual) activity towards hyaluronate due to the similarities in chemical motifs between both 
polymers (although heparan sulfate contains 2 to 3 more sulfate groups per disaccharide unit). Figure 6 lists 
the number of EC3.2.1.36/166 hyaluronidases pre-selected as having appropriated catalytic events.  

Regarding 4.2.2.1 enzyme sequences, the used substrate was a hexamer of the hyaluronate molecule (since 
the active site’s cavity is bigger compared to 3.2.1.36/166 enzymes). None of the sequences shined over the 
others. Only WP_070668766 showed promising results, but it was not a 4.2.2.1 enzyme nor a 3.2.1.36/166 
one. This enzyme sequence belongs to the glycoside hydrolase family 16 and should be labelled as a 3.2.1.39 
enzyme sequence. Thus, it is a hydrolase and has the typical catalytic dyad constituted by 2 Glu residues. 
Figure 7 lists the number of 4.2.2.1 hyaluronate lyases pre-selected as having appropriated catalytic events. 
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Figure 6. Plot showing the number of catalytic events in the 3.2.1.36/166 hyaluronidases compared to a control from UniProt entry; 
X4Y2L4 (left). Catalytic residues and the catalytic distances of 3.2.1.36/166 hyaluronidases highlighted (right).  

 
Figure 7. Plot showing the number of catalytic events in the 4.2.2.1 hyaluronate lyases. Catalytic residues and the catalytic mechanism 
of 4.2.2.1 hyaluronidases (right). Image taken from https://pubs.acs.org/doi/10.1021/jp406206s.  

As detailed in the Deliverable D2.1 “Manufacturers' needs and specifications, protocol”, in the case of 
Schoeller’s needs and specifications, the following are considered priority: 

 Priority 1: Lipases for removing residual spinning oils/sizing products that, if not eliminated, will 
otherwise generate emissions during the drying and fixation steps; priority textiles are those made 
of polyester (PES). Schoeller requested enzymes working in water, and temperatures below 80˚C. 

 Priority 2: Oxidoreductases (laccase or peroxidase-like) for supporting in the decolorization of dyes. 
Schoeller requested enzymes working in water, and temperatures below 80˚C. 

 Priority 3: Polyesterases that can be applied in the biodegradation of the current textile materials in 
such a way that they can even be reused to produce new recycled textiles. Schoeller did not request 
any working conditions. 

Other enzymes involved in different processes are requested at lower priority level. The high priority 
demands were the cleaning/pretreatment of synthetic fibers process, which needs cutinases, 
polyurethanases and amidases; the problem of the chalk marks, which needs lipases, esterases, 
polyurethanases, amidases and cellulases; the solvent cleaning process, which needs lipases, cutinases, 
polyurethanases, amidases and proteases; the higher amounts of chemicals problem, which needs lipases, 
cutinases, polyurethanases, amidases, and proteases; and the fewer water consumption in the dyeing 
process, which needs lipases, cutinases and oxidoreductases.  

The substrates used for the computational simulations of plastic degrading enzymes with PELE were, where 
those related to the intermediates during the degradation of polyurethane and polyester (polyethylene 
terephthalate, PET): polyurethane dimer, mono-(2-hydroxyethyl) terephthalic acid (MHET) (Figure 8), several 
ester polymers like polylactic acid (PLA), polycaprolactone (PCL), and aliphatic polyurethane, and two types 
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of proteins: 6-units of nylon and 7-units of polyglycine). Figure 8 lists the number of polyester degrading 
hydrolases as having appropriated catalytic events with MHET. 

 

 
Figure 8. Accepted and total catalytic events for the 6 selected PETases or MHETases (left). In 3 of them the ligand never reaches 
catalytic positions. Catalytic mechanism for esterases (right). 

As detailed in Deliverable D2.1 “Manufacturers' needs and specifications, protocol”, in the case of Henkel’s 
needs for the detergent industry, the priority targets are enzymes for removing specific fatty oil stains, which 
are mainly true lipases (E.C. 3.1.1.3). Other relevant enzymes which have been considered are 
proteases/peptidases (E.C. 3.4) and amylases (E.C. 3.2.1.1). The catalytic mechanism of lipases involves a 
catalytic triad formed by serine, histidine and aspartic/glutamic acid residue. Histidine activates serine 
through general base catalysis to deprotonate serine, which transforms it into a nucleophile with the ability 
to attack the ester bond of triacylglycerides. Histidine donates a proton to the leaving group and then 
activates a water molecule to allow the hydrolysis of the intermediate. The acid residue, which can be an 
aspartic acid or glutamic acid residue, activates the histidine residue. Alpha-amylase catalyses the hydrolysis 
of internal alpha-glycosidic linkages in starch. The chemical reaction involves two aspartic acid residues and 
a glutamic acid. A nucleophilic aspartic acid side chain attacks the sugar anomeric center assisted by acid 
catalysis of glutamic acid and aspartic acid. Finally, proteases are shared with the textile industry. 

Simulation conditions are 30°C (range 20-40°C) and pH 7.75 (range 7.0-8.5) to accomplish the liquid detergent 
formulation conditions that Henkel specified. The substrates employed have been the triglyceride triolein 
(glycerol + three unsaturated oleic acid units) for lipases, a dimer and a tetramer of starch for alpha-amylases 
and two types of peptide substrates for proteases, 6-units of nylon and 7-units of polyglycine. In the case of 
lipases, it is to highlight that there are two types of lipases: with and without lid domain (Figure 9). Study of 
lid domain movement using molecular motion algorithms software (MoMa loop sampling), that allows 
exhaustively sample protein loop conformations, has allowed the opening of the lid domain in most lipases 
which had the active site inaccessible for the substrate. This is why the analysis of the lid domain presence 
and movement was considered during the analysis (Figures 10-15).  

 

 

 

 

 

 

 

Figure 9. Lipase structure. The lid domain enclosing the catalytic active site is shown in light blue, and the same lid domain in an open 
conformation is shown in yellow.  
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Figure 10. Accepted and all catalytic events for the selected amylases (left). Catalytic mechanism for these enzymes (right). 

 
Nylon -6  

 
PRG 

Figure 11. Accepted and all catalytic events for the selected serine proteases against a 6-units nylon ligand (top) and a 7-units 
polyglycine (bottom). 

 
Figure 12. Accepted and all catalytic events for the selected cysteine proteases. From left to right, PELE simulations using 6-units 
nylon and 7-units polyglycine. 
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Figure 13. Accepted and all catalytic events for the zinc proteases. From left to right, PELE simulations using 6-units nylon and 7-units 
polyglycine. 

 
Figure 14. Accepted and all catalytic events for the polymer degrading enzymes. From left to right, the same proteins against 
polycaprolactone, polylactic acid, and aliphatic polyurethane. 

 
Figure 15. Accepted and all catalytic events for the selected lipases (left). Ligand used for the simulations: triolein (right).  

Detailed interaction energy vs catalytic distance serine-substrate plots and violin plots of the distribution of 
Interaction Energies and catalytic residues-substrate distance along PELE-Induced Fit Simulations for each 
family of enzymes is given in Annex, File 1. 
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5.2 Pre-selection by PELE of sequences selected by BLASTP  
As detailed in the Deliverable D2.2 “Set of 250,000 sequences pre-selected” (November 2021, updated 
December 2022), a total of 349 sequences (Annex File 2) were annotated using BLAST searches of UniProt 
and the non-redundant GenBank databases using default parameters and they were directly presented as 
having all proper catalytic domains and catalytic residues, and the presence of signal peptides, by performing 
the computational pipeline summarized in Table 1 for the different needs in the project. Among them, 
hyaluronidases were subjected to PELE simulations, as detailed above. Two hyaluronidases, whose 
sequences are detailed below, were particularly interested as they did show appropriated number of catalytic 
events and all catalytic machinery.  

Extracellular exopolygalacturonate lyase (PL9).  
ID: VD_PL9 
MKKHTLALCLAAILAPVAHAAEIKVEDLTWKAITFGQSTDMNFGSTILPEKVGVNQVTVNGEAVAAGKLASTFTIESRGGKL
ANSHEGLTFYYTELPTDVNFTLSADVVLEQLGPETGATPNRQEGAGLMVRDILGAERLVPQPEGHEEFPSASNMVMNLM
RSHTRTNDGMTNINASFREGVYQPWGTPGNRLSRVDYVEGVPYGTAETYRMTLTRTNDGFKVSYRNGEKFIEQAVKGAN
ANIVEMQNSDSQYVGFFASRNAKMTVSNVDLQLAAADTVDAPKYAVKQGELVFKIASSPRSATKEYPVQARANYSGEFEV
LHNDKVVAKQTVTAGDLFSQWLTLDSGANQMEVRFTAIDGPNKETQAHRYSVDVVSLPDPMTLYVAPNGSDKGNGSQA
QPLDLATAVELLPTGGTIILKDGDYQGMEIPLTASGSADKLKHLRAEGDNVRFVSELRHEANYWHYQGIEVAGAQFIVHGS
HNTFEKMVTHGAPDTGFVITSPENIGRALWASYNQVIESESYNNMDPSQINADGFAAKMRIGDGNTFIRCLSHHNIDDG
WDLFNKVEDGANGAVTILDSISFSNGRTLDVANKGGTIGNGFKLGGEGIPVPHVVKNSLSFNNNMDGFTDNFNPGALVLS
DNVSIDNKRFNYLFRKSPYSGEIEQGTFTNNRSYRFHVSSKYDDVINSAKSTGNALVENGTTYTSDGKAVDSKMLAPLKQAS
VIDTQQAIPGKQEAMQLKQLIH  
Signal peptide underlined (as seen by http://www.cbs.dtu.dk/services/SignalP/) 
Intracellular pectin lyase 

ID: VD_PL 
MAKGDVITLNFETFVDSDTQVKVTRLTPTDVICHRNYFYQKCFTQDGKKLLFAGDFDGNRNYYLLNLETQQAVQLTEGKGD
NTFGGFISTDERAFFYVKNELNLMKVDLETLEEQVIYTVDEEWKGYGTWVANSDCTKLVGIEILKRDWQPLTSWEKFAEFY
HTNPTCRLIKVDIETGELEVIHQDTAWLGHPIYRPFDDSTVGFCHEGPHDLVDARMWLVNEDGSNVRKIKEHAEGESCTHE
FWIPDGSAMAYVSYFKGQTDRVIYKANPETLENEEVMVMPPCSHLMSNFDGSLMVGDGCDAPVDVADADSYNIENDPF
LYVLNTKAKSAQKLCKHSTSWDVLDGDRQITHPHPSFTPNDDGVLFTSDFEGVPAIYIADVPESYKH 
No signal peptide (as seen by http://www.cbs.dtu.dk/services/SignalP/) 

Both enzymes belong to a bacterium, Vibrio diabolicus, which is able to synthesize a polymer with properties 
very similar to hyaluronic acid (HE800) [https://link.springer.com/article/10.1007/s00253-014-6086-8, 
https://www.sciencedirect.com/science/article/pii/S0369811403002839]. Thus, if it generates a polymer 
similar to hyaluronic acid, it could be that it has a hyaluronic acid degradation system. The two pre-selected 
genes are part of a gene cluster (01552, 01553, 01554, 01555, 01556). Gene 01552 is a "Sodium/glucose 
cotransporter" and 01553 is an "Oligogalacturonate-specific porin protein". Thus, these first two proteins 
would be involved in absorbing the fragments released by the hyaluronate lyase that degrades the polymer 
(01554). 01555 is another "Sodium/glucose cotransporter" and finally we have 01556 which is the 
oligogalacturonate lyase, which will be involved in the degradation of the oligomers to the polymer starting 
materials (probably to re-synthesize it). 

Figure 16 illustrates the poses of extracellular hyaluronate lyase and can clearly bind hyaluronan (Glide Scores 
of ~ -10 to -7 kcal/mol), plus the substrate carboxylate is interacting with the Ca2+ of the active centre, as it 
should. Figure 17 illustrates the poses of are the poses of intracellular hyaluronate lyase and can clearly bind 
hyaluronan (Glide Scores of ~ -15 to -10 kcal/mol), plus the carboxylic substrate is interacting with the Mn2+ 
of the active centre, as it should. 
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Figure 16. Poses of extracellular hyaluronate lyase with hyaluronan (Glide Scores of ~ -10 to -7 kcal/mol), plus the substrate 
carboxylate is interacting with the Ca2+ of the active centre. The catalytic Lys is coloured yellow. 

 
Figure 17 Poses of intracellular hyaluronate lyase with hyaluronan (Glide Scores of ~ -15 to -10 kcal/mol), plus the carboxylic substrate 
is interacting with the Mn2+ of the active centre. The coordination sphere of the catalytic Mn2+ is coloured yellow. 

5.3 Pre-selection by the machine learning EP-Pred method 
As detailed in the Deliverable D2.2 “Set of 250,000 sequences pre-selected” (November 2021, updated 
December 2022), a total of 506 esterases and lipases were pre-selected by applying EP-Pred from the Lipase 
Engineering Database (http://www.led.uni-stuttgart.de/). By applying the methods detailed in Deliverable 
D2.2, several filters were applied to the model EP-Pred to decrease the number of hits to a final set of about 
10 sequences for the experimental validation. Briefly, the top 100 sequences according to E-values returned 
by HMM were selected to be modelled and their active site cavity analyzed in search of the catalytic triad 
and geometric descriptors. Only 73 sequences passed this second filter and were forwarded to the 
subsequent analysis by SiteMap, a widely used binding site analysis tool, which then generated various 
binding cavity descriptors. As seen in our previous engineering studies, two metrics: hydrophobicity, and the 
ratio of enclosure/exposure, were useful in ranking promiscuity; thus, we used these to rank the final set of 
ten proteins for experimental validation picking those that intersected at the top in both metrics (Figure 5). 
A set of sequences encoding esterases or lipases with presumptive substrate promiscuous character of 
interest for the textile and detergent sectors were pre-selected for experimental validations in WP4 
(accession numbers, AJP48854.1, ART39858.1, PHR82761.1, WP_014900537.1, WP_026140314.1, 
WP_042877612.1, WP_059541090.1, WP_069226497.1, WP_089515094.1). 



17 
 

5.4 Pre-selection by HMMs  
As detailed in Deliverable D2.2 “Set of 250,000 sequences pre-selected” (November 2021, updated 
December 2022), a total of 409 different sequences encoding lipases of relevance for detergent and textile 
sectors were pre-selected by applying HMMs. After a careful checking for the presence of proper catalytic 
domains and catalytic residues, and the presence of signal peptides, which is indicative of higher lipase 
character, and similarity lower than 40% identity to known enzymes (see Deliverable D2.2 for details), two 
lipases, related to the top priority lipase Lip9 found after experimental tests in WP4, were pre-selected. 

> k127_15135326_1 
MAGWVAGLACAIAVVSAVDAVAAPKQYPVVMDFATAIAKSAQNPAASPAGVNVPCTLTAEHPRPVVLINGTHASMMM
NWAGLGPTLANQGFCVYSTALGASASDQIQTCGPVADSIAQIASFVDDVLNRTGAQKVDLIGHSQGGLIAESYTKFYGRDK
VANVALLSPSTHGSDQSGTSVHPTDLGAQIASIGCPAVLDQLQSSDVVRELNTGPITVPGVNYTVIETRYEFIITPTPSAAFIQ
EPGVRNLIVQDYCPQDLSDHLSLAYSEPAWNLLIDAISARTGEISC 
Metagenome: AGWS_m_17 
Source: Wilhelmsburg soil_oil contaminated 
35.2% identity Lip9 
Triad: Ser141 His262 Glu229 
Signal peptide: underlined 

> k127_129897_3 
MRRCVTVSVILFLAFVMWSGVASAAPTYPVPDSFLAGVPLELGNPGGSAPGSNDWSCVPSDAHPEPVVLVHGTGGARQT
NWAVYAPLLANEGYCVYSLTYGNFPELPWPLDAIGGMTPIDTGTAQIATFVDQVLSSTGASKVDLVGHSQGTLQANNYVK
FFGGADKVSKIVSLAPPWHGTYGNDQISVGRSMRALGIDDEVAAGFPVCGACPEMFQGSAFIDRMRADGVYVPGIEYANI
ATRYDELVVPYTSGIEPGPNTTNIVVQDDCEQDYSDHVAVAGSARAAGFVLNALDPAHPRDVPCRFVAPVAG 
Metagenome: AGWS_m_58 
Source: Elbe river_enrichment 
32.1 % identity Lip9 
Triad: Ser148 His276 Asp244 
Signal peptide: underlined 

In addition, as detailed in the Deliverable D2.2 “Set of 250,000 sequences pre-selected” (November 2021, 
updated December 2022), a total of 9115 different sequences encoding predicted polyester degrading 
hydrolases (PETases) were selected. After a careful checking for the presence of proper catalytic domains 
and catalytic residues, as detailed above, a set of 21 were further selected for in vitro expression and activity 
assays (see details in Deliverable D4.3 “Cell-free expression reported system developed”). 

5.5 Preselection by PSI-BLAST and PELE 
As detailed in Deliverable D2.2 “Set of 250,000 sequences pre-selected” (November 2021, updated 
December 2022), a total of 525 different sequences were pre-selected by applying PSI-BLAST and PELE. By 
applying stricter filtering protocols, namely, removing redundant sequences from which 3D models by 
AlphaFold could not be obtained, and similarity lower than 75% identity to known enzymes (see Deliverable 
D2.2 for details), a final set of 288 new sequences (Annex File 3) were pre-selected for in deep analysis in 
WP4. 

5.6 Pre-selection by rigidity analysis  
Since changes in protein flexibility may play a role in the thermal adaptation to different temperatures 
without altering the global structure and the active site, we analysed the flexibility of the esterases and 
lipases pre-selected. The idea was to preselect those having computed phase transition temperature (Tp) 
fitting to the thermal conditions requested by manufactures (see D2.1 “Manufacturers' needs and 
specifications, protocol”). A total of 228 esterases and lipases, relevant to textile and detergent sectors, were 
pre-selected (Annex File 4) after calculation of Tp. In details, biomolecular thermostability can have a 
thermodynamic or kinetic origin. Thus far, rigidity analysis has been used to investigate structural effects on 
the folded state only, and it has been estimated that increased structural rigidity is responsible for increased 
thermostability in 60% of cases. Furthermore, rigidity analysis cannot account for the time-dependency of 
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processes. Constraint network analysis (CNA)-based analyses of the relationship between structural rigidity 
and flexibility versus thermostability have been applied on pairs and a series of homologous proteins from 
psychrophilic to hyperthermophilic organisms, as well as on a series of variants from one protein retro- and 
prospectively. As a result of the analysis, we observed significant correlations between the computed phase 
transition temperature (Tp), a measure for global structural rigidity, and mean annual temperature (MAT) 
from where the enzyme was retrieved (Irish Sea–Red Sea transect: R2 = 0.33, p < 0.001, Figure 18, left panel. 
2e; Tara Ocean: significant regression only after MAT breakpoint of 21.6˚C, R2 = 0.1, p < 0.05, Figure 18, right 
panel) for the two esterase datasets (Irish Sea–Red Sea transect and Tara Ocean). Overall, these findings 
indicate that esterases and lipases from microorganisms found in environments with higher MAT have 
evolved so that their esterases and lipases are more rigid (less flexible). This might mirror the principle of 
corresponding states, according to which homologs from mesophilic and thermophilic organisms have similar 
flexibility and rigidity characteristics at their respective growth temperatures. The lack of regression observed 
in the phase transition analysis of esterase at environmental temperatures below 22˚C could represent the 
onset of evolutionary trade-offs that may occur during biochemical adaptation to lower temperatures where 
enzymes have to keep a minimum of rigidity for correct functioning while those adapted to higher 
temperatures can increase it to cope with the higher metabolic requirements of the organisms. Taken 
together, a total of 228 esterases and lipases were selected based on the proximity of the thermal conditions 
requested by manufactures and the MAT of the site from where the enzyme was retrieved. 

 
Figure 18. Thermal adaptation of pre-selected enzymes. Left panel, phase transition temperature (Tp) patterns as a function of the 
MAT at the site from which the esterases and lipases originated along the north–south longitudinal transect. Right panel, Tp patterns 
of 150 pre-selected esterases and lipases from Tara ocean locations as a function of the MAT at the site. R2 and p-values of regressions 
are reported in each graph and the blue zone represents the confidence value of 95%. In the case of esterases from the Tara ocean 
dataset, piecewise regressions were run and the breakpoints (flexus) where the slope of the regressions significantly changed are 
indicated with dashed lines on the MAT axis. Non-significant regression is reported in grey. 

5.7 Preselection by DDG value 
As mentioned above, it is important to pre-select sequences encoding enzymes with thermal characteristics 
similar to the thermal conditions requested by manufactures (see D2.1 “Manufacturers' needs and 
specifications, protocol”). In this line the objective was to develop a predictive tool that allow such a pre-
selection. Note that the aplication of a computational method to guide the screening of stabilizing amino 
acids or mutations greatly reduces the experimental time and cost required for experimental effort.  
Following on from that we applied DDG calculations to all esterases and lipases pre-selected in Deliverable 
D2.2 “Set of 250,000 sequences pre-selected” (November 2021, updated December 2022), from which one 
esterase/lipase, namely, EH37 (Protein data Bank acc. nr. 5JD5), was pre-selected for in deep characterization 
in WP5. In brief, a total of 100 mutations were selected on the basis of DDG values, from which ten were 
selected as priority to find correlations between DDG values and melting temperature or denaturing 
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temperature (Td) of the mutants (Table 2). As will be detailed in WP5, the predicted changes in stability for a 
prospective esterase system (PDB ID: 5JD5) correlates with the observed denaturation temperature, Td (˚C), 
as can be seen in the Figure 19. Thus, the DDG values could be for pre-selecting sequences encoding enzymes 
with different thermal behaviour. 

Table 2. List of the esterase / lipase preselected by DDG calculations, and the mutants selected. 
Predictor Mutation DDG value Td (˚C) 
5JD5 None None 35.99 ± 0.19 
AL 36F -1.593600001 39.36 ± 0.33 
AL 36H -0.902499993 37.99 ± 0.29 
AL 62I -0.844500003 31.77 ± 1.12 
AL 87G -0.791399995 35.97 ± 0.44 
AL 242G -0.769099992 32.11 ± 0.85 
AL 41W -0.8463 34.59 ± 0.23 
AL 214I -0.885600004 34.45 ± 0.31 
AL 36M -0.680699998 38.16 ± 0.45  
AL 294S -0.426099996 37.39 ± 0.39 
AL 36E -0.378099997 38.26 ± 0.52 

 

 
Figure 18. Correlation between DDG predicted changes and experimental Td.  

6. Conclusions and outlook 
As a result of the activities done to achieve Deliverable D2.2 “Set of 250,000 sequences pre-selected” 
(November 2021, updated December 2022), a total of approx. 3.16 million sequences encoding target 
enzymes were retrieved and pre-selected. In Deliverable 2.3, a number of bioinformatics and computational 
tools were applied that allow the pre-selection of approx. 1355 sequences encoding enzymes relevant to 
FuturEnzyme, which were transferred to WP4. Note that these pre-selected sequences do not account those 
retrieved after functional screens in WP3.  
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Annex 
Because of their extensive size, the following Annex files are provided in a separate ZIP file: 
See intranet’s project website File 1 (D2_3) in www.futurenzyme.eu -> login -> private-area -> shared-data. 

 Annex File 1_Network Analysis Enzymes_Preselected 
List of pre-selected sequences encoding enzymes constituting each of the networks identified per 
enzyme family using network analysis followed by computational (PELE-based) tools. The table contain 
information which include the reference sequence (and ID), the retrieved sequence (and ID), and the 
origin. SAME AS IN DELIVERABLE D2.2 (see Annex File 3_Network Analysis Enzymes). 

 Annex File 2_ BLASTP_PELE _Preselected 
List of pre-selected sequences encoding enzymes retrieved by BLASTP analysis followed by 
computational (PELE-based) tools. The table contain information which include the reference sequence 
(and ID), the retrieved sequence (and ID), and the origin. SAME AS IN DELIVERABLE D2.2 (see Annex File 
4_ BLAST_Results). 

 Annex File 3_HMMs_Preselected 
List of pre-selected sequences encoding enzymes most similar to lipase Lip9, through PSI-BLAST followed 
by computational (PELE-based) tools. The table contain information which include the reference 
sequence (and ID), the retrieved sequence (and ID), and the origin. SAME AS IN DELIVERABLE D2.2 (see 
Annex File 7_ PSI-BLAST and PELE_Results_Lip9). 

 Annex File 4_Rigidity_Preselected 
List of 228 sequences encoding esterases and lipases pre-selected by rigidity analysis. 
 
 

 



 
 

Annex Figure 1. Interaction Energy vs Catalytic Distance Serine-Substrate Plots and Violin Plots of the 
distribution of Interaction Energies and catalytic residue-substrate distance along PELE-Induced Fit 
Simulations for each family of enzymes. The size of the scatter dots represents the rejected PELE steps that 
were considered as a time of residence of substrate in the position.  
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