## Work Package 3: Activity-based bioprospecting for enzymes



Meeting #3

General Assembly – online – November 14 2022





| Work package number 9 | WP3            | Lead beneficiary 10           | 3 - BANGOR |
|-----------------------|----------------|-------------------------------|------------|
| Work package title    | Activity-based | l bio-prospecting for enzymes |            |
| Start month           | 1              | End month                     | 36         |

#### Objectives

Entirely novel enzymes, which have no homologues in databases or with homology to known enzymes lower than ~20%, will escape the computational pre-screening in WP2. In order to circumvent this problem, WP3 combines three main pillars: bio-resources, technical capabilities for bio-resource handling and management, and activity-based multi-screens and Next Generation Sequencing (NGS), with a major objective: To screen for novel enzymes which, because their novelty, could not have been predicted using the BLAST, HMM and computational screens of WP2. To this end, the consortium has established a large collection of environmentally, geographically and taxonomically diverse bio-resources: 1. Cultured microbial isolates from (non)-extreme environments, many representing novel lineages; 2. Expression libraries from DNA from uncultivable microbial communities. 3. Genome sequences of cultivable microbial isolates; 4. Shotgun sequences of microbial communities; 5. Enzymes available in expression systems. The consortium has also at its disposal technical facilities and tools for: 1. Microbial handling and cultivation, including extremophiles, bioprospecting and sampling; 2. Handling and cloning DNA from uncultivable microorganisms; 3. High throughput screening supported by robotic and single cell manipulation workstations; 4. Multiple complementary analytics; 5. DNA sequencing (Illumina MiSeq and Oxford Nanopore instruments); 6. Bioinformatics analysis.

#### Description of work and role of partners

WP3 - Activity-based bio-prospecting for enzymes [Months: 1-36]

BANGOR, CSIC, UHAM, UDUS, IST ID, CNR

In WP3 we propose 3 major tasks, through which we will implement sophisticated activity-based platforms to exploit available and new ad hoc bio-resources for entirely novel enzymes demanded by the detergent, textile and cosmetic sectors.

Task 3.1 Exploitation of the FuturEnzyme bio-resource collections M1-M24

Task Lead Partner - IST-ID

Participants: CSIC, UHAM, UDUS, BANGOR, CNR

Task 3.2 Sampling extreme environments for generating new microbial bio-resources M6-M30

Task Lead Partner - CNR

Participants: IST-ID

Task 3.3 Next Generation Sequencing for generating sequences of target enzymes M1-M36

Task Lead Partner – BANGOR

Participants: CSIC, UHAM, CNR

| Participation per Partner     |            |  |  |  |  |
|-------------------------------|------------|--|--|--|--|
| Partner number and short name | WP3 effort |  |  |  |  |
| 1 - CSIC                      | 5.00       |  |  |  |  |
| 3 - BANGOR                    | 17.00      |  |  |  |  |
| 4 - UHAM                      | 10.00      |  |  |  |  |
| 5 - UDUS                      | 4.00       |  |  |  |  |
| 6 - IST ID                    | 21.00      |  |  |  |  |
| 7 - CNR                       | 18.00      |  |  |  |  |
| To                            | tal 75.00  |  |  |  |  |

#### List of deliverables

| Deliverable<br>Number <sup>14</sup>                                                   | Deliverable Title                                                                             | Lead beneficiary | Type <sup>15</sup>                                                                               | Dissemination level <sup>16</sup>                                                                | Due<br>Date (in<br>months) <sup>17</sup> |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------|
| D3.1                                                                                  | Bio-resources prepared and exchanged                                                          | 3 - BANGOR       | Other                                                                                            | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 2                                        |
| D3.2                                                                                  | Standard assays,<br>analytics and calculations<br>for monitoring enzymatic<br>performance     | 4 - UHAM         | Report                                                                                           | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 2                                        |
| D3.3                                                                                  | isolates, and 10 enzymes shortlisted for sequencing 6 - IST ID Other for members consortium ( |                  | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 10                                                                                               |                                          |
| D3.4                                                                                  | Sequence, activity,<br>and stability datasets<br>from best positive bio-<br>resources         | 3 - BANGOR       | data sets,<br>microdata, etc                                                                     | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 18                                       |
| D3.5                                                                                  | Set of new bio-resources<br>to screen or sequence                                             | 7 - CNR          | Other                                                                                            | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 24                                       |
| D3.6 Complete set of positive naïve screened enzymes and sequences and their datasets |                                                                                               | 3 - BANGOR       | Report                                                                                           | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 32                                       |

- A list of bio-resources available within the consortium have been prepared and exchange (D3.1 – month M2)
  - All partners implicated



## D3.1. BIO-RESOURCES PREPARED AND EXCHANGED



#### **ENZYMES AVAILABLE**

1353 entries, representing highly diverse enzymes relevant to FuturEnzyme, available in expression systems, from single (meta)genomes; the enzymes have been isolated and characterized for purposes others than those in FuturEnzyme, and will be now screened with project-relevant substrates and conditions.



#### **ISOLATES AVAILABLE**

1387 entries, representing psychrophilic, mesophilic, thermophilic, hyper-thermophilic, thermo-acidophilic, alcaliphilic, extreme halophilic, obligate anaerobic and facultative (micro)aerobic sulphur-respiring microorganisms. The collection includes strains growing at temperatures from 0° to 92°C, pH from 1.5 to 10.0, salinity up to 490 g/L, and pressure up to 50 Mpa.



#### ISOLATES WITH GENOMES AVAILABLE

197 entries, representing genomes from isolates representing lineages of (non)-extremophiles growing from 0 to 92°C, pH from 1.5 to 9.0, salinity up to 492 g/L, pressure up to 50 MPa.



#### METAGENOMIC LIBRARIES

28 entries, representing DNA material from communities inhabiting extreme environments (low pH from 1.1 to 4.4; high pH of 9.3-9.6; high salinity from 200 to 490 g/L; pressure up to 300 MPa; temperature up to 98°C) and non-extreme environments, including contaminated sites (close to neutral pH, low to moderate salinity (up to 50 g/l), temperatures from 4 to 30°C, up to 10.1 MPa).



#### **ENRICHMENT CULTURES**

41 entries, derived from samples originated from multiple locations and representing enriched microorganisms of at least 16 different genera.



#### ISOLATES WITH PROVEN ACTIVITY

55 entries.



#### SHOTGUN METAGENOME SEQUENCES

61 entries, corresponding to at least 16 different types of extreme and non-extreme environments.

These QR codes are confidential and available within the FuturEnzyme consortium. In order to increase the security, they have been blocked with a password (FuturEnzyme€01/06/2021). They will also be included in the private area of the FuturEnzyme website (www.futurenzyme.eu), in the section Shared material. This private area that serves as a repository for the project is accessible to the members of the consortium through user and password.

- A number of assays for functional screens have been defined and shared (D3.2 – Month 2)
  - All partners implicated



# D3.2. STANDARD ASSAYS, ANALYTICS AND CALCULATIONS FOR MONITORING ENZYMATIC PERFORMANCE



#### 18x Protocols for DETERGENT APPLICATIONS

- 4x pH shift liquid protocols for quantifying esterase-lipase activity
- 3x Liquid protocols for quantifying esterase-lipase activity with chromogenic esters
- 2x Liquid protocols for quantifying esterase-lipase activity with non-chromogenic esters
- 9x Agar plate protocols

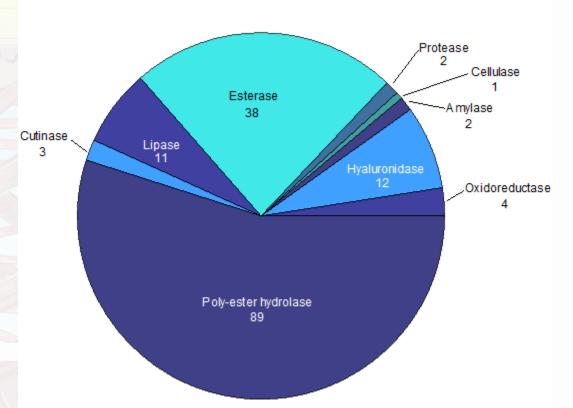


#### 23x Protocols for TEXTILE APPLICATIONS

- 7x Agar plate polyesterase screening assays
- 2x Agar plate protease protocols
- 1x Agar plate cellulase protocol
- 1x Agar plate oxidoreductase protocol
- 12x Liquid protocols

48 common and standardised protocols




#### 7x Protocols for COSMETIC APPLICATIONS

- 4x Liquid colorimetric assays for hyaluronidase activity
- 1x Liquid analysis of hyaluronic acid oligosaccharides by HPAEC-PAD
- 1x Liquid analysis of hyaluronic acid oligosaccharides by SEC-ELSD
- 1x Agar assay for the determination of hyaluronidase activity

- A list of best clones, isolates and enzymes have been prepared and shortlisted for sequences (D3.3 – month M10)
- All partners implicated



# D3.3. 100 Best clones, 10 isolates, and 10 enzymes shortlisted for sequencing or transfer to WP2



The 154 prospects (up to 162, noticing that some isolates present different activities, so most probably several enzymes) have been settled apart out of 120 genomes from isolates, metagenomes from 47 microbial communities, 1200 microbial strains, 30 metagenome libraries and 500 enzymes (as mentioned in Task 3.1, Grant Agreement, Annex 1, part A).

Distribution by activity of the enzymes and microorganisms selected in this deliverable



Isolates/Microorganisms

|                |                 |               | Number of isolates with activity/ies | First priority for (industrial partner/s) | Second<br>priority for<br>(industrial<br>partner/s) |
|----------------|-----------------|---------------|--------------------------------------|-------------------------------------------|-----------------------------------------------------|
| Oxidoreductase |                 |               | 3                                    | Schoeller                                 | Henkel                                              |
|                | Glucosidase     | Hyaluronidase | 10                                   | Evonik                                    |                                                     |
|                |                 | Amylase       | 1                                    | Scholler                                  | Henkel                                              |
| Hydrolase      | Peptidase       | Protease      | 1                                    | Scholler                                  | Henkel                                              |
| пушовае        | Ester-hydrolase | Esterase      | 4                                    | Henkel/ Schoeller                         |                                                     |
|                |                 | Lipase        | 8                                    | Henkel/ Schoeller                         |                                                     |
|                |                 | Cutinase      | 3                                    | Henkel/ Schoeller                         |                                                     |

**Enzymes** 

|     |                 |                         |                                           | Number of<br>enzymes with<br>activity | First priority<br>for (industrial<br>partner/s) | Second<br>priority<br>for<br>(industria<br>I<br>partner/s |
|-----|-----------------|-------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------------------------------------------|
| EC1 | Oxidoreduct ase | Laccase, Cu-<br>oxidase |                                           | 1                                     | Schoeller                                       | Henkel                                                    |
| ase |                 | Glucosidase             | Hyaluronid<br>ase<br>Amylase<br>Cellulase | 2<br>1<br>1                           | Evonik<br>Scholler<br>Schoeller                 | Henkel                                                    |
|     | Hydrolase       | Peptidase               | Protease                                  | 1                                     | Scholler                                        | Henkel                                                    |
| EC3 |                 |                         | Esterase                                  | 34                                    | Henkel/<br>Schoeller                            |                                                           |
|     |                 | Ester-hydrolase         | Lipase                                    | 3                                     | Henkel/<br>Schoeller                            |                                                           |
|     |                 |                         | Poly-ester hydrolase                      | 89                                    | Schoeller                                       | Henkel                                                    |

D3.3. 100 Best clones, 10 isolates, and 10 enzymes shortlisted for sequencing or transfer to WP2



The following QR code directs to the full list of **candidate isolates** 



The following QR code directs to the full list of candidate enzymes

 Data set of sequence, activity and stability from best positive bio-resources (D3.4 – month M18) to be finalised now!



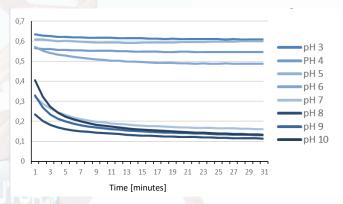


Previosly reported

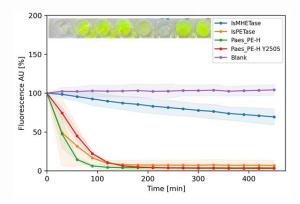
- WP3
  - > Task 3.1 Exploitation of the FuturEnzyme bio-resource collections
- ✓ A set of 85 esterases and lipases including 16 cutinase-like enzymes from previous projects collected

|   | 1                  | 2                    | 3                  | 4                    | 5                    | 6                    | 7                   | 8                    | 9                    | 10                  | 11                   | 12                  |   |
|---|--------------------|----------------------|--------------------|----------------------|----------------------|----------------------|---------------------|----------------------|----------------------|---------------------|----------------------|---------------------|---|
| Α | LCC WCCG           | Psab PE-H            | Abo_LipA<br>(CE02) | Paes TB045<br>(CE15) | lipA                 | Est24c11             | TBEc350             | Hyd8c31              |                      | Aku GDSL1<br>(CE17) |                      | Hyd20c2             | Α |
| В | LCC                | Paby PE-H            | Hyd18c13           | Abo_LipC<br>(CE09)   | EV                   | TBEcIH8              | TBEc321             | Hyd18c8              | Hyd4c6               | Est8c8              |                      | Lip10c11            | В |
| С | PETase             | Ppac PE-H            | TBEc157            | Hyd13c2              | Aku Est3<br>(CE20)   |                      | Est9c19             | Lip3c12              | Hyd3c14              | Abo_LipE<br>(CE10)  |                      | Est20c28            | С |
| D | Plit PE-H          | Poce PE-H            | TBEc310            | Abo_LipD<br>(CE07)   | Est9c28              | Hyd10c19             | TBEc314             | Aku Est2<br>(CE19)   | Abo_LipG<br>(CE11)   | Abo_LipI<br>(CE12)  |                      | Est13c9             | D |
| E | Pbau PE-H          | Paes PE-H<br>Y250S   | TBEc304            | Hyd33c4              | Lip1c6               | Est29c9              | Hyd20c11            | Paes TB035<br>(CE13) | 1,4-D#003            | Hyd22c10            |                      | Est30c5             | E |
| F | Ppel PE-H          | Paes PE-H<br>(CE16)  | СусТВ025           | Abo_Est3<br>(CE03)   | MHETase              | Est51c6              | Aku Est1<br>(CE18)  | TBEc305              | Hyd23c15             | TBEc308             | EV                   | EstP                | F |
| G | POIL-1 PE-<br>H    | Pxin PE-H            | Hyd7c19            | EV                   | Dim-008<br>(CE01)    | Paes TB037<br>(CE14) | Est16c36            | ED30                 | Est24c4              | Hyd19c35            | Est65c2              |                     | G |
| Н | Abo_Est7<br>(CE05) | Paes TB072<br>(CE24) | Dim004             | Abo_Est1             | Paes TB040<br>(CE22) | FScut                | PaesTB074<br>(CE25) | Dim001               | Paes TB081<br>(CE23) | Abo Est2<br>(CE04)  | Paes TB001<br>(CE21) | Abo Est12<br>(CE08) | Н |

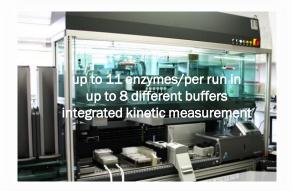
Table of ready to use UDUS/UHAM esterases & lipases at UDUS for FuturEnzyme activities







Previosly reported

- WP3
  - > Task 3.1 Exploitation of the FuturEnzyme bio-resource collections
- ✓ A set of 88 esterases and lipases including 16 cutinase-like enzymes from previous projects collected
- ✓ MTP assay development

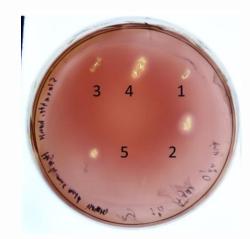

Turbidity measurements for cutinase characterization



pH indicator assay for hydrolysis of solid substrates



Implemented automated characterization






Previosly reported

- WP3
  - > Task 3.1 Exploitation of the FuturEnzyme bio-resource collections
- ✓ Enrichment cultures of slaughterhouse metagenome bank with hyaluronic acid
- Several strains with *in silico* put. hyaluronic acid lyases
- Mainly from clade of y-gamma proteobacteria, e.g., *Proteus* sp. or *Raoultella* sp.

M9 medium +0.1% hyaluronic acid







## WP3 Deliverable 3.3 Resources

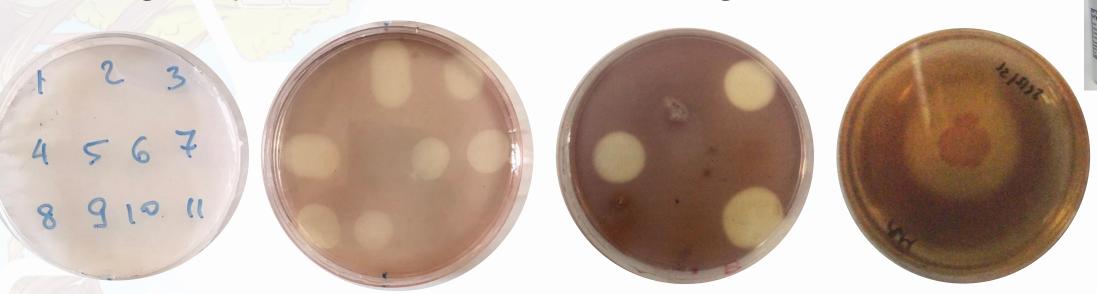


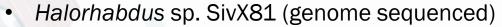
|                                           | Source                                | Id-status                           | Genome status                                        | Enzyme candidates                                                       |
|-------------------------------------------|---------------------------------------|-------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|
|                                           | iso                                   | lates showing hyaluronic acid hydr  | olysis                                               |                                                                         |
| Proteus sp.                               | Slaughterhouse drain                  | Partial 16S rDNA sequence           | Not sequenced, Sequence of related strains available | In silico:<br>Chondroitin lyase<br>Put. Hyaluronic acid AC Lyase        |
| Isolate Hyal_hyal_UDUS 2 (Raoultella sp.) | Slaughterhouse drain                  | Partial 16S rDNA sequence           | Sequencing finished, draft (by Bangor)               | Next step: in silico candidate enzyme identification (BSC?)             |
| Isolate Hyal_hyal_UDUS 3 (Raoultella sp.) | Slaughterhouse drain                  | Partial 16S rDNA sequence           | Sequencing finished, draft (by Bangor)               | Next step: in silico candidate enzyme identification (BSC?)             |
| (Isolate Hyal_hyal_UDUS 4)<br>(Spirosoma) | Slaughterhouse drain                  | Partial 16S rDNA sequence           | Sequencing finished, draft (by Bangor)               | Next step: <i>in silico</i> candidate enzyme identification (BSC?)      |
|                                           | str                                   | ains exceptionally enriched in este | rases                                                |                                                                         |
| Halopseudomonas aestusnigri               | Oil polluted coast (spain)            | Type strain                         | draft                                                | 2 Polyesterases (1 confirmed)<br>12 confirmed additionally<br>esterases |
| Halopseudomonas litoralis                 | Coastal waters (spain)                | Type strain                         | Closed genome available.                             | 2 Polyesterases (1 confirmed)                                           |
| Halopseudomonas oceani                    | Deep Sea                              | Type strain                         | draft                                                | 2 Polyesterases (1 confirmed)                                           |
| Halopseudomoans<br>bauzanensis            | Polluted industrial site soil (italy) | Type strain                         | draft                                                | 2 Polyesterases (1 confirmed)                                           |
|                                           | Fu                                    | turEnzyme executive Meeting 2022 l  | JDUS                                                 | 14                                                                      |

FuturEnzyme executive Meeting 2022 UDUS



## WP3 Deliverable 3.3 Resources





|               | 77/ 3113 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |                                    |                                        |                                                         | 1111     |
|---------------|--------------------------------------------|------------------------------------|----------------------------------------|---------------------------------------------------------|----------|
|               | Source                                     | Id-status                          | Genome status                          | Enzyme candidates                                       | iţi<br>C |
|               | is                                         | solates showing polyester hydrolys | iis                                    |                                                         |          |
| PEH_PUE UDUS1 | Deep Sea sediment                          | Partial 16S rDNA sequence          | Sequencing finished, draft (by Bangor) | Candidates identified by HMN (UHAM). Next step:cloning  | 1        |
| PEH_PUE UDUS2 | Deep Sea sediment                          | Partial 16S rDNA sequence          | Sequencing finished, draft (by Bangor) | Candidates identified by HMN (UHAM). Next step:cloning  | 1        |
| PEH_PUE UDUS3 | Deep Sea sediment                          | Partial 16S rDNA sequence          | Sequencing finished, draft (by Bangor) | Candidates identified by HMN (UHAM). Next step: cloning | 1        |
| PEH_PUE UDUS4 | Deep Sea sediment                          | Partial 16S rDNA sequence          | Sequencing finished, draft (by Bangor) | Candidates identified by HMN (UHAM). Next step: cloning | l        |
| PEH_PUE UDUS5 | Deep Sea sediment                          | Type strain                        | Sequencing finished, draft (by Bangor) | Candidates identified by HMN (UHAM). Next step: cloning | 1        |





Two hyaluronic-acid degrading isolates have been identified by CNR, when using EVO hyaluronic acid as substrate for screening





Vibrio alginolyticus from anoxic sediments of meromictic brackish Lake Faro, Messina

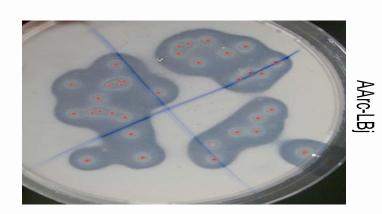


### List of hydrolytic halo- and halonatronoarchaea

| Strain      | Lakes | Affiliation                          | Substrate                      | Activity | Growth |
|-------------|-------|--------------------------------------|--------------------------------|----------|--------|
| H-hyl       | CI    | Halobacteria (new genus?)            | Hyaluronic acid (HA)           | +        | +      |
| RMX81       | Cl    | Halorhabdus sp.                      | Coco oil, xylan. HA            | +        | +      |
| RMX62       | CI    | Halorhabdus uthaensis                | Coco oil, skim milk, xylan, HA | +        | +      |
| Siv8X       | CI    | Halorhabdus uthaensis                | Coco oil, skim milk, xylan HA  | +        | +      |
| HArcel-Eu2  | CI    | Halomicrobium sp.                    | Hyaluronic acid, cellulose     | +        | +      |
| HArcel2**   | CI    | Halosimplex sp.                      | Cellulose                      | +        | +      |
| HArcel3**   | CI    | Halomicrobium sp.                    | Cellulose                      | +        | +      |
| Harc-L1     | CI    | Halobacteria (unidentified)          | Olive oil                      | +        | +      |
| Harc-L2     | CI    | Halobacteria (unidentified)          | Olive oil                      | +        | +      |
| BNX81       | CI    | Halococcoides cellulosivorans        | Cellulose, xylan HA            | +        | +      |
| LCL711      |       | Halorhabdus sp.                      | Xylan, hyaluronic acidHA       | +        | +      |
|             |       |                                      |                                |          |        |
| AB-hyl1     | SL    | Paracoccus sp.                       | Hyaluronic acid (HA)           | +        | +      |
| AArcel7     | SL    | Natrarchaeobius sp.                  | Hyaluronic acid (HA)           | +        | -      |
| AArc-St1-1* | SL    | Natranaeroarchaeum aerophilum        | Hyaluronic acid (HA)           | +        | -      |
| AArc-L1     | SL    | Natrarchaeobaculum aegyptiacus       | Olive oil                      | +        | +      |
| AArc-L2     | SL    | Natronolimnohabitans innermongolicus | Olive oil                      | +        | +      |
| AArc-LBj    | SL    | Halobacteria (unidentified)          | Olive oil                      | +        | +      |

S - soda lakes; CI - chloride lakes;

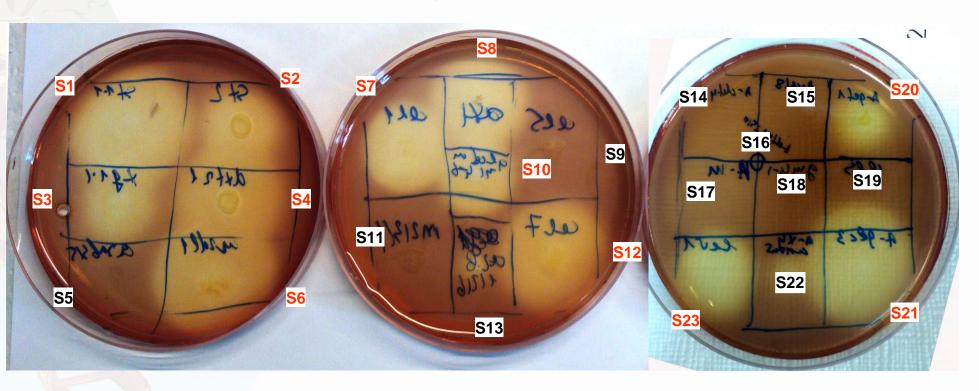
\* - extremely high carotenoid content - suitable for production?


\*\* - for genomes

Bold – genome sequenced














#### Natronoarchaeal HA+ isolates grown at 4 M Na+/pH 9.5 (Hyaluronic acid+ye) / 37°C/ 9d)



#### Soda lake natronoarchaea

S1: AArc-St1-1 (amylolytic)

S2: AArc-St2 (amylolytic)

S3: AArc-xg1-1 (xyloglycan)

S4: AArc-dxtr1 (dextran)

S5: AArc-arb3/5 (arabinan)

S6: AArc-curdl1 (curdlan)

S7: AArcel1 (Natronolimnobius; cellulo-xylan)

S8: AArc-ax1(Natronolimnobius; arabinoxylan)

S9:AArcel5 (Natronobiforma; cellulo-xylan)

\$10: AArc-glctm3/4/8 (*Natronococcus*; glct-mannan)

S11:AArc-m2/3/4 (mannan-cellulo)

S12: AArcel7 (chitin)

S13: AArc-arb1/2/6 (Natronolimnobius; arabinan)

#### **S13**

S14: AArcht4 (Natrarchaeobius chitinivorans)

\$15: AArcht8 (Natrarchaeobius chitinivorans)

S16: AArcht-SI (*Natrarchaeobius chitinivorans*)

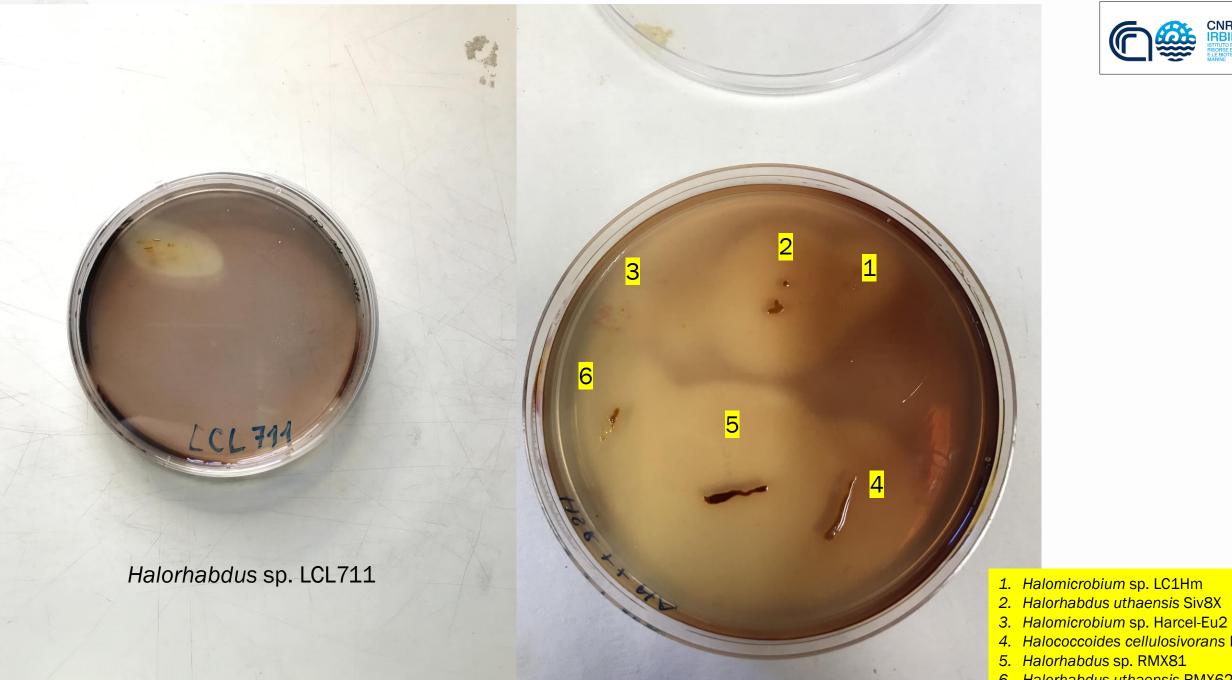
S17-19: Mannan-utilizing natronoarchaea

S20:AArc-glct1 (galactan)

**S21**: AArc-glc3 (*Natronorubrum tibitense*; glycogen)

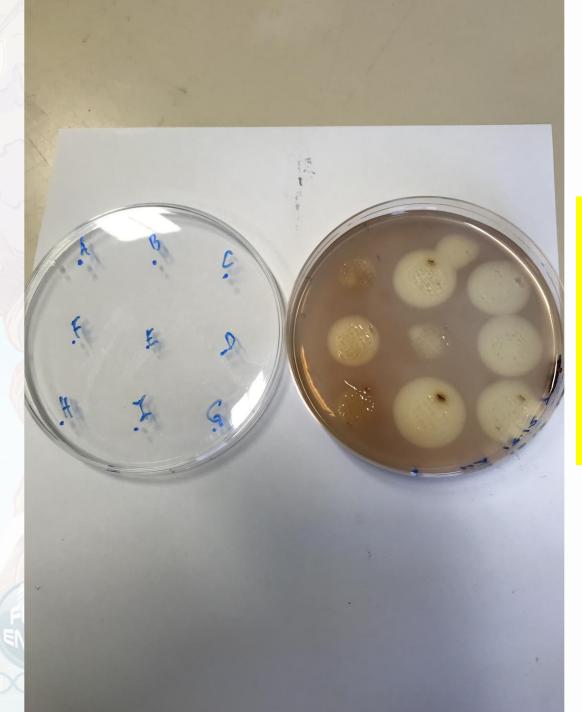
S22: AArc-X4 (Halomicrobium sp; cellulo)

S23: AArc-lev1 (levan)[~Aarc-St1-1]


Only AArcel7 showed moderate growth with Hyl in liquid culture

without ye. But it faded after second transfer

Colony growth: S1, S2, S3, S4, S6(weak), S7, S8, S9(w), S10, S11, S12,


S13; Cl6







- 2. Halorhabdus uthaensis Siv8X
- 4. Halococcoides cellulosivorans BNX83
- 6. Halorhabdus uthaensis RMX62





- A. Haloferax lucertense SVX82
- B. Halosimplex sp. HArcel2
- C. Halomicrobium sp. Harcel3
- D. Halobacteria (new genus) H-hyl
- E. Haloferax alexandrinus BNX82
- F. Halorhabdus sp. KCL-HA6
- G. Halococciodes sp. BariCL
- H. Haloferax sp. SVXCL
- I. Halorhabdus sp. KCL5

Hyaluronidase activity by agar-diffusion test of haloarchaeal cultures grown with cellobiose + hyaluronate for one week. Fraction of 50  $\mu$ l of supernatant was placed on filter discs and incubated on the plates with hyaluronic acid (400 mg l<sup>-1</sup>) at pH 7.5, 4 M total Na<sup>+</sup>, 37 °C, 24h;



- Three lipases have been identified by CSIC, when screening two fosmid libraries made at BANGOR using tributyrin, olive oil, egg yolk, cocoa and coconut
  - 2 clones from D2 library (bone [turkey femur]-degrading microbiome; 11.12.2017; Byfjorden (60,238185N, 5,181210E) were found positive for tributyrin, egg yolk and cocoa
    - D2 pCCFOS fosmid library has a titre of 9000 clones max.
  - 1 clone from I3 library (bone [cow tibia]-degrading microbiome; 11.12.2017; Byfjorden (60,238185N, 5,181210E) were found positive for tributyrin, egg yolk, olive oil and cocoa
    - I3 pCCFOS fosmid library has a titre of 2000 clones max.

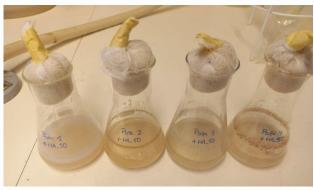
Previosly reported



### Task 3.2 Sampling extreme environments for generating new microbial bio-resources

• sampling for new bio-resources; identifying novel microbes and enzyme activities; screening our microbial collection for efficient enzymes



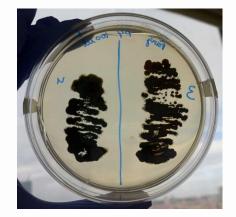

### New samples since June (M12-M18)

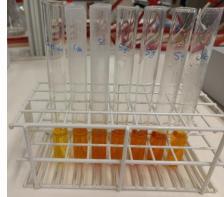
Graciosa island, the Azores, PT











Samouco salterns, PT



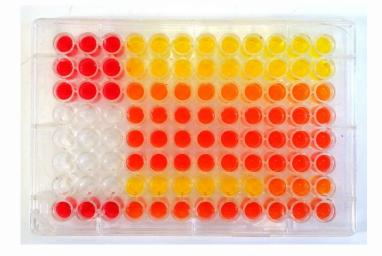




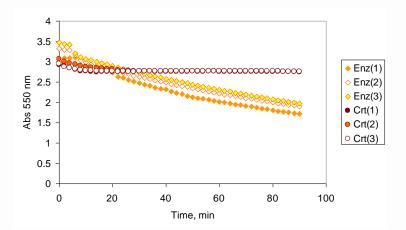




• sampling for new bio-resources; identifying novel microbes and enzyme activities; screening our microbial collection for efficient enzymes




### Lipases/Esterases


| Bacterial collection | Tributyrin or<br>Tween 80 | Cononut oil | Palm oil | Olive oil |
|----------------------|---------------------------|-------------|----------|-----------|
| Existing             | 40*                       | 5           | 0        | 6         |
| FuturEnzyme (new)    | 7                         | 12          | 1        | 16        |



Screening isolates with lipase activity



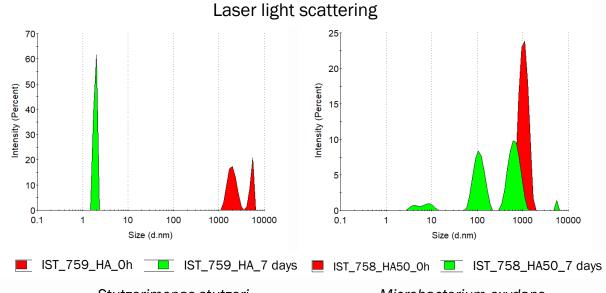
Effect of olive oil concentration during bacterial growth on lipase activity



• sampling for new bio-resources; identifying novel microbes and enzyme activities; screening our microbial collection for efficient enzymes



### Hyaluronidases


| >   | Bacterial collection | HA<br>(Hyacare) | HA5<br>(Hyacare) |
|-----|----------------------|-----------------|------------------|
| 475 | Existing             | 2*              | 2*               |
|     | FuturEnzyme (new)    | 14              | 14               |



Enrichment cultures with HA and HA50

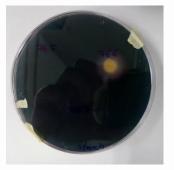


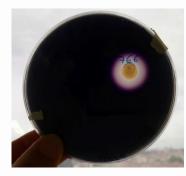
Screening



Stutzerimonas stutzeri

Microbacterium oxydans


• sampling for new bio-resources; identifying novel microbes and enzyme activities; screening our microbial collection for efficient enzymes




### **Amylases**

| Bacterial collection | Starch |  |  |
|----------------------|--------|--|--|
| Existing             | 48*    |  |  |
| FuturEnzyme (new)    | 7      |  |  |







### Agarases

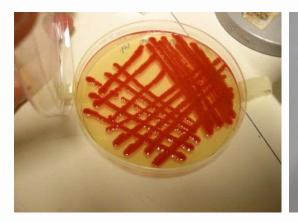






• sampling for new bio-resources; identifying novel microbes and enzyme activities; screening our microbial collection for efficient enzymes




#### Other activities

| Bacterial collection | Protease | Inulinase | Transaminase |  |
|----------------------|----------|-----------|--------------|--|
| Existing             | 48*      | 46*       | 7*           |  |

### **Production of interesting compounds**



Melanin by
Neophaeotheca triangularis



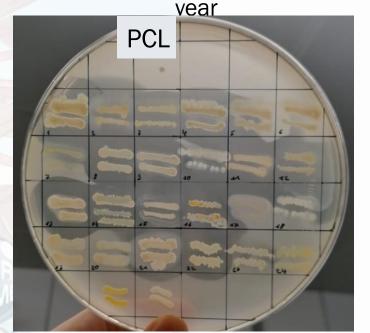
Prodiginines by Serratia sp.

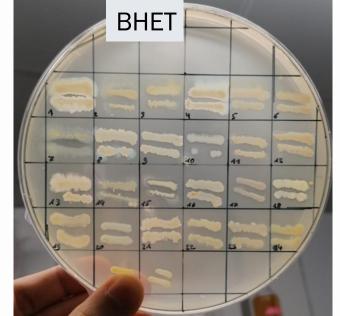


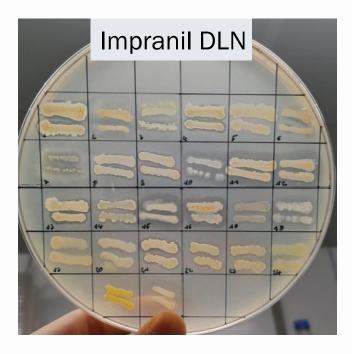
15 In small she was a co

Carotenoids by several species

<sup>\*</sup> Mostly Bacillus sp.; presented in MS9

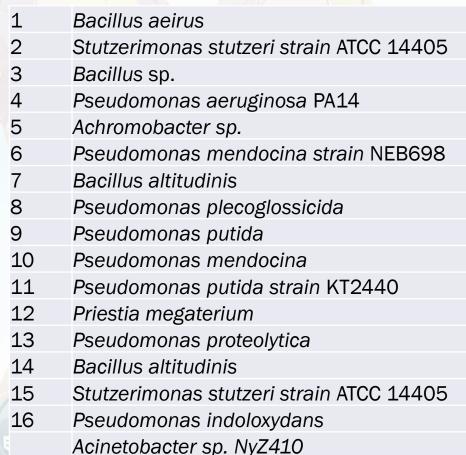

## Enrichments for polymer-degrading microorganisms






Enriched in M9 medium, anaerobic + aerobic, 28°C, over up to 1

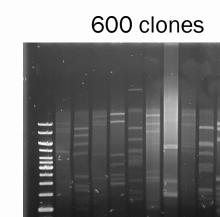







## Enrichments for polymer-degrading microorganisms

# 16 S Sequencing results of isolated single strains




## UH **H**

### Fosmid library of Rhodococcus fascians



photo: DMSZ



30-37 kb inserts

| Sub-<br>strate | Degrading<br>Colonies |
|----------------|-----------------------|
| DLN            | 2                     |
| BHET           | 2                     |
| PCL            | 1                     |
| TBT            | many                  |

to be verified...



 34 lipases have been identified by CSIC, when screening 5 fosmid libraries made at BANGOR using tributyrin, olive oil, egg yolk, cocoa and coconut

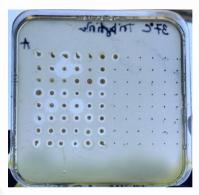
|       |                                                                                                  |            |                 | P.H. |    | 33-4-21 |
|-------|--------------------------------------------------------------------------------------------------|------------|-----------------|------|----|---------|
| # S   | te-library                                                                                       | Nr. Clones | Nr of positives | 5    | 6  | -       |
| D2    | library (bone [turkey femur]-degrading microbiome; 11.12.2017; Byfjorden (60,238185N, 5,181210E) | 9000       | 2               | 0    | 0  | 0       |
| 13 li | brary (bone [cow tibia]-degrading microbiome; 11.12.2017; Byfjorden (60,238185N, 5,181210E)      | 2000       | 1               | 45   | 0  | 6       |
| Med   | dSea clone library (Ancona port, Italy, 43°37′N; 13°30′15″E)                                     | 10300      | 7               | 21   | 48 | 27      |
| Acid  | l mine dranage system (Spain; 43°15′47″N, 5°46′9″W)                                              | 11600      | 13              | 0    | 0  | 0       |
| TB (  | Thermophillic Bacteria) (mix genomes)                                                            | 11800      | 11              | 41   |    | 46      |
|       | TOTAL                                                                                            | 44700      | 34              | 0    | 0  | 0       |
|       |                                                                                                  |            |                 |      |    |         |

Previosly reported

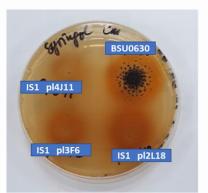




Screening of Ischia hot vents BBP-enrichment fosmid library (Ischia, Italy) (10000 clones max) identified:


- 12 fosmid clones positive for tributyrin, 2 fosmids clones positive for tributyrin, coconut oil, palm oil
- 16 fosmid clones with amylase activity for starch
- 3 fosmid clones with laccase activity for syringol and 3 fosmid clones with protease activity for skim milk

Screening of soil fosmid library (9000 clones max) identified:


16 fosmid clones were positive for tributyrin













tributyrin

starch

syringol

skim milk

# Task 3.2 Sampling extreme environments for generating new microbial bio-resources M6-M30

 Sampling activities are planned to generate new isolates and sequences to feed WP2/WP4 in progress

Milestone 11: "The first sampling campaign completed"





# Task 3.2 Sampling extreme environments for generating new microbial bio-resources M6-M30

 Sampling activities are planned to generate new isolates and sequences to feed WP2/WP4 in progress











# Task 3.2 Sampling extreme environments for generating new microbial bio-resources



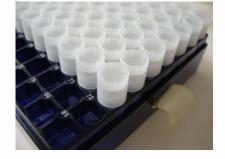
 sampling for new bio-resources; identifying novel microbes and enzyme activities; screening our microbial collection for efficient enzymes

#### Rock pool at Guincho, Portugal




















→ Screening

Sherlock® Microbial ID System

# Task 3.3 Next Generation Sequencing for target enzymes M1-M36



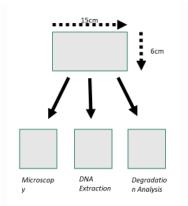
Thermoleophilum album – thermophilic, obligate hydrocarbonoclastic, high-GC Gram+.
 Genome sequenced at Bangor

26 genes were cloned, 5 soluble esterases purified, 2 lipases were found active with C14-C18 pNp-esters

Previosly reported






### Sequences available for enzyme mining:

- 39 treatments/timepoints of microbiomes of colonisers of plastics (HDPE, LDPE, PP, PE and PET) in a transition:
  - -wastewater treatment plant effluent
  - -river water
  - -brackish water
- -seawater (mesocosm) at the School of Ocean Sciences, Bangor University

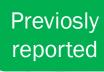
Sequenced by Bangor (NERC 'Plastic Vector' project)
>250 Gb data available for enzyme mining in FuturEnzyme

Previosly reported

| Water    | Time     |  |  |
|----------|----------|--|--|
| Effluent | 24 Hours |  |  |
| Fresh    | 16 Hours |  |  |
| Brackish | 18 Hours |  |  |












Menai Straits surface seawater an the St George Pier, School of Ocean Sciences, Bangor University Lignin enrichment (shotgun metagenome sequenced at Bangor)

18 genes from 6 enzyme families with highest coverage were cloned







 30 treatments/timepoints of microbiomes from anaerobic bioreactors set up from Landfill in Penhesgyn Recycling Centre, Anglesey Natural Resources Wales (co-participant) 200 Gbp sequencing data

11 amylases (most-abundant in metagenomic reads) (s. overleaf) cloned, 5 expressed soluble, 1 found active with starch substrates
8 Hyaluronidase cloned, 6 expressed soluble.



Bangor: Sequencing isolates for UDUS. Sequencing strains of rhodococci purchased at DSMZ

**Your Samples** 

| Barcode 😯 | Туре    | Coverage 🛭 | Customer's Ref | Taxon                      | Current Queue (Status | )                      |
|-----------|---------|------------|----------------|----------------------------|-----------------------|------------------------|
| 238336    | WGS_DNA | 30x        | Sample1        | Spirosoma endbachense      | Bioinformatics        |                        |
| 238337    | WGS_DNA | 30x        | Sample2        | Raoultella ornithinolytica | Bioinformatics        |                        |
| 238338    | WGS_DNA | 30x        | Sample3        | Raoultella ornithinolytica | Bioinformatics        |                        |
| 238339    | WGS_DNA | 30x        | Sample4        | Pseudomonas knackmussii    | Bioinformatics        | LIDLIC                 |
| 238340    | WGS_DNA | 30x        | Sample5        | Microbacterium profundi    | Bioinformatics        | UDUS                   |
| 238341    | WGS_DNA | 30x        | Sample6        | Escherichia fergusonii     | Bioinformatics        |                        |
| 238342    | WGS_DNA | 30x        | Sample7        | Phenylobacterium falsum    | Bioinformatics        |                        |
| 238343    | WGS_DNA | 30x        | Sample8        | Erythrobacter pelagi       | Bioinformatics        |                        |
| 238344    | WGS_DNA | 30x        | Sample9        | Rhodococcus fascians       | Bioinformatics        |                        |
| 238345    | WGS_DNA | 30x        | Sample11       | Rhodococcus rhodochrous    | Bioinformatics        |                        |
| 238346    | WGS_DNA | 30x        | Sample12       | Rhodococcus rhodochrous    | Bioinformatics        | Bangor (DSMZ strains   |
| 238347    | WGS_DNA | 30x        | Sample13       | Rhodococcus sp.            | Bioinformatics        | Bangoi (DSIVIZ Strains |
| 238348    | WGS_DNA | 30x        | Sample14       | Rhodococcus sp.            | Bioinformatics        |                        |
| 238349    | WGS_DNA | 30x        | Sample15       | Rhodococcus rhodochrous    | Bioinformatics        |                        |

Complete on November 7, 2022



Bangor:

Sequencing of isolates for CNR Messina. Hyaluronidase and other GH-positive.

#### **Your Samples**

| Barcode 😯 | Туре    | Coverage 🛭 | Customer's Ref | Taxon                            | Current Queue (Status) |                     |
|-----------|---------|------------|----------------|----------------------------------|------------------------|---------------------|
| 233161    | WGS_DNA | 30x        | PG22_01        | Halorhabdus                      | Complete               |                     |
| 233162    | WGS_DNA | 30x        | PG22_02        | Halorhabdus                      | Complete               |                     |
| 233163    | WGS_DNA | 30x        | PG22_03        | Halorhabdus                      | Complete               |                     |
| 233164    | WGS_DNA | 30x        | PG22_04        | Halorhabdus                      | Complete               | Hala a sala a a     |
| 233165    | WGS_DNA | 30x        | PG22_05        | Halorhabdus                      | Complete               | Haloarchaea         |
| 233166    | WGS_DNA | 30x        | PG22_06        | Halorhabdus                      | Complete               | (CNR)               |
| 233167    | WGS_DNA | 30x        | PG22_07        | Halorhabdus                      | Complete               |                     |
| 233168    | WGS_DNA | 30x        | PG22_08        | Halorhabdus                      | Complete               |                     |
| 233169    | WGS_DNA | 30x        | PG22_09        | Halorhabdus                      | Complete               |                     |
| 233170    | WGS_DNA | 30x        | PG22_10        | Vibrio alginolyticus             | Complete               |                     |
| 233171    | WGS_DNA | 30x        | PG22_11        | Vibrio alginolyticus             | Complete               | Marine gamma-proteo |
| 233172    | WGS_DNA | 30x        | PG22_12        | uncultured gamma proteobacterium | Complete               | (CNR)               |

Complete on July 1, 2022



### Task 3.3 Bio-resources (Bangor) (new )

- **62** genes synthesized since last meeting in Madrid (in addition to **37** previously synthesized at Bangor) for:
- 1. 8 glycosyl hydrolases (new HA-candidates from sequenced genomes of **Partner** CNR))
- **2. 19** Lipases, esterases, laccases, peroxidases-catalases from *Oleiphilus* messinensis ME102<sup>T</sup>
- 3. 9 hydrolases from Parys Mt hyperacidic (pH 1.5) fosmid library
- 4. 4 MCO, peroxidases from PP and LDPE colonisers
- 5. **22** LipEst, MCO, peroxidases/catalases from 1-week PET colonisers shotgun metagenome-sequencing data (Menai Strait seawater mesocosm)

### Deliverables

|  | List | of | de | ivera | b | les |
|--|------|----|----|-------|---|-----|
|--|------|----|----|-------|---|-----|

| Deliverable<br>Number <sup>14</sup> | Deliverable Title                                                                                 | Lead beneficiary | Type <sup>15</sup>           | Dissemination level <sup>16</sup>                                                                | Due<br>Date (in<br>months) <sup>17</sup> |
|-------------------------------------|---------------------------------------------------------------------------------------------------|------------------|------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------|
| D3.1                                | Bio-resources prepared and exchanged                                                              | 3 - BANGOR       | Other                        | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 2                                        |
| D3.2                                | Standard assays,<br>analytics and calculations<br>for monitoring enzymatic<br>performance         | 4 - UHAM         | Report                       | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 2                                        |
| D3.3                                | Set of 100 best clones, 10 isolates, and 10 enzymes shortlisted for sequencing or transfer to WP2 | 6 - IST ID       | Other                        | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 10                                       |
| D3.4                                | Sequence, activity,<br>and stability datasets<br>from best positive bio-<br>resources             | 3 - BANGOR       | data sets,<br>microdata, etc | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 18                                       |
| D3.5                                | Set of new bio-resources<br>to screen or sequence                                                 | 7 - CNR          | Other                        | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 24                                       |
| D3.6                                | Complete set of positive<br>naïve screened enzymes<br>and sequences and their<br>datasets         | 3 - BANGOR       | Report                       | Confidential, only<br>for members of the<br>consortium (including<br>the Commission<br>Services) | 32                                       |













### Milestones

| Milestone<br>number <sup>18</sup> | Milestone title                             | Lead beneficiary | Due<br>Date (in<br>months) | Means of verification                                                                                                                                            |
|-----------------------------------|---------------------------------------------|------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MS9                               | First round of functional screens completed | 6 - IST ID       | 6                          | Materials available – this milestone will attest the realisation of the first screens of available bio-resources.                                                |
| MS10                              | First round of sequencing completed         | 3 - BANGOR       | 6                          | Data available – this milestone will attest to the realisation of the sequencing of the first selected bioresources found to be positive in the screen tests.    |
| MS11                              | The first sampling campaign completed       | 7 - CNR          | 12                         | Sites data, samples available - this milestone will attest completion of campaigns for sampling new bio-resources with information about sample sites available. |





